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Personalised medicine: using genetic information

Any two people share >99% of their DNA, the remaining <1% makes us unique

How can we use genetic information to understand variation in disease and stratify patients?
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Genetic variants associated with disease can help with 
prevention, diagnosis and treatment

Genetic variants in the BRCA1 and BRCA2 genes are associated with increased risk of breast 
and ovarian cancer



Genetic variants are associated with response to warfarin

Narrow therapeutic index and difficulty in predicting individual dose requirements

Variants in CYP2C9 (enzyme that metabolized warfarin) and VKORC1 (enzyme that is inhibited 
by warfarin) can affect starting dose
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For many complex diseases it remains challenging to 
determine which genetic variants are responsible for 

variation in disease status and response to 
treatments



Using gene expression to understand variation across 
disease cohorts

Gene expression is like a dimmer switch on a light
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Using gene expression to understand variation across 
disease cohorts

Gene expression captures information about the current environmental stresses on the body
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Using gene expression to understand variation across 
disease cohorts

Gene expression captures information about the current environmental stresses on the body 
and someone’s genome
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Sepsis

A life-threatening condition that occurs when the body’s immune system responding to an 
infection injures it’s own tissues and organs



Sepsis is challenging to diagnose and treat

• Anyone can develop it

• It can be caused by a chest infection, 
abdomen problem or an infected cut or bite

• Worldwide, 1/3 of people with sepsis die

• No reliable diagnostic marker

Treatments
• Antibiotics and organ support but none that target host immune response
• Substantial variation in response



Genomic Advances in Sepsis (GAinS) study

>1,000 sepsis patients recruited from Intensive 
Care Units around the UK

Blood collected to measure gene expression 
across the genome

Cohort stratified into two groups:
Sepsis Response Signature (SRS) groups

www.ukccggains.com



SRS1 (immunosuppressed) group associated with early 
mortality

Articles
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the SRS group-specifi c eQTL, we included the fi rst 
25 principal components. We found that incorporation 
of principal components enhanced discovery of 

cis-eQTL, consistent with previous studies (appendix 
1 p 3 and p 5).8,16,17 This approach identifi ed more eQTL 
than did inclusion of specifi c clinical covariates such as 

Figure 1: Transcriptomic sepsis response signatures
Unsupervised hierarchical cluster analysis for the top 10% most variable probes (n=2619) for the 265 patients in the discovery cohort (A). First three PCs plotted with 
the proportion of variance explained by each component (B); individuals are coloured by group membership based on two groups assigned with k-means. Volcano 
plot (C) of diff erentially expressed probes for SRS1 versus SRS2 (red colouring shows fold change >1·5, false discovery rate <0·05). Most enriched functions, disease 
phenotypes, and predicted upstream regulators were derived from diff erentially expressed genes (D). Kaplan-Meier survival plot by SRS group (95% CIs shaded) for 
(E) discovery cohort and (F) validation cohort. SRS=sepsis response group. PC=principal component.
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SRS group membership can affect response to treatment

SRS1

VANISH trial: placebo vs hydrocortisone



SRS group membership can affect response to treatment
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VANISH trial: placebo vs hydrocortisone



Detecting SRS groups at an earlier time point

Bioresource in Adult Infectious Disease

Adult patients with suspected infection presenting to the emergency room

Gene expression data for 1,800 patients

Can we identify those most likely to develop sepsis to improve diagnosis and 
treatment?
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Ultimate goal: 
Delivering the right drug to the right person at the right time

Patient 
stratification
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